Hinweis: Dieses eingebettete Video wird von Vimeo, Inc., 555 West 18th Street, New York, New York 10011, USA bereitgestellt.
Beim Abspielen wird eine Verbindung zu den Servern von Vimeo hergestellt. Dabei wird Vimeo mitgeteilt, welche Seiten Sie besuchen. Wenn Sie in Ihrem Vimeo-Account eingeloggt sind, kann Vimeo Ihr Surfverhalten Ihnen persönlich zuzuordnen. Dies verhindern Sie, indem Sie sich vorher aus Ihrem Vimeo-Account ausloggen.
Wird ein Vimeo-Video gestartet, setzt der Anbieter Cookies ein, die Hinweise über das Nutzerverhalten sammeln.
Weitere Informationen zum Datenschutz bei „Vimeo“ finden Sie in der Datenschutzerklärung des Anbieters unter: https://vimeo.com/privacy
Neurochirurgie
Wirbelsäulenchirurgie
Allgemeinchirurgie
Funktionelle Neurochirurgie
Ablation
Schmerztherapie
C2 Xplore
ISIS IOM
ISIS Neurostimulator
IONM-Zubehör
Neurochirurgie
Wirbelsäulenchirurgie
Allgemeinchirurgie
Funktionelle Neurochirurgie
Ablation
Schmerztherapie
C2 Xplore
ISIS IOM
ISIS Neurostimulator
IONM-Zubehör
Die Produkte von inomed stützen sich auf eine fundierte wissenschaftliche Literatur, die weltweit sowohl in der Erforschung innovativer Anwendungen als auch in der täglichen Patientenversorgung zum Einsatz kommt. Durch die enge Zusammenarbeit mit Ärzt*innen und Wissenschaftler*innen entwickeln wir kontinuierlich neue Ansätze im Intraoperativen Neuromonitoring, in der Funktionellen Neurochirurgie und in der Schmerztherapie, die in verschiedenen Publikationen beschrieben und dokumentiert sind.
Nikolov, P., Heil, V., Hartmann, C. J., Ivanov, N., Slotty, P. J., Vesper, J., Schnitzler, A., & Groiss, S. J. (2022). Motor Evoked Potentials Improve Targeting in Deep Brain Stimulation Surgery. Neuromodulation : journal of the International Neuromodulation Society, 25(6), 888–894. https://doi.org/10.1111/ner.13386
Trenado, C., Hartmann, C. J., Elben, S., Pauls, K. A. M., Friggemann, L., Groiss, S. J., Timmermann, L., Vesper, J., Schnitzler, A., & Wojtecki, L. (2016). Local field potential oscillations of the globus pallidus in cervical and tardive dystonia. Journal of the neurological sciences, 366, 68–73. https://doi.org/10.1016/j.jns.2016.04.033
Kaes, M., Beynon, C., Kiening, K., Neumann, J. O., & Jakobs, M. (2024). Stereotactic frame-based biopsy of infratentorial lesions via the suboccipital-transcerebellar approach with the Zamorano-Duchovny stereotactic system-a retrospective analysis of 79 consecutive cases. Acta neurochirurgica, 166(1), 147. https://doi.org/10.1007/s00701-024-06036-8
Alhalabi, O. T., Sahm, F., Unterberg, A. W., & Jakobs, M. (2023). The molecular diagnostic yield of frame-based stereotactic biopsies in the age of precision neuro-oncology: a cross-sectional study. Acta neurochirurgica, 165(9), 2479–2487. https://doi.org/10.1007/s00701-023-05742-z
Neumann, J. O., Campos, B., Younes, B., Jakobs, M., Jungk, C., Beynon, C., Deimling, A. V., Unterberg, A., & Kiening, K. (2018). Frame-based stereotactic biopsies using an intraoperative MR-scanner are as safe and effective as conventional stereotactic procedures. PloS one, 13(10), e0205772. https://doi.org/10.1371/journal.pone.0205772
Baláž, M., Búřil, J., Jurková, T., Koriťáková, E., Hrabovský, D., Kunst, J., Bártová, P., & Chrastina, J. (2023). Intraoperative electrophysiological monitoring determines the final electrode position for pallidal stimulation in dystonia patients. Frontiers in surgery, 10, 1206721. https://doi.org/10.3389/fsurg.2023.1206721
Ferrea, S., Groiss, S. J., Elben, S., Hartmann, C. J., Dunnett, S. B., Rosser, A., Saft, C., Schnitzler, A., Vesper, J., Wojtecki, L., & Surgical Approaches Working Group of the European Huntington’s Disease Network (EHDN) (2018). Pallidal deep brain stimulation in juvenile Huntington's disease: local field potential oscillations and clinical data. Journal of neurology, 265(7), 1573–1579. https://doi.org/10.1007/s00415-018-8880-1
Krauss, P., Marahori, N. A., Oertel, M. F., Barth, F., & Stieglitz, L. H. (2018). Better Hemodynamics and Less Antihypertensive Medication: Comparison of Scalp Block and Local Infiltration Anesthesia for Skull-Pin Placement in Awake Deep Brain Stimulation Surgery. World neurosurgery, 120, e991–e999. https://doi.org/10.1016/j.wneu.2018.08.210
Sorar, M., Hanalioglu, S., Kocer, B., Eser, M. T., Comoglu, S. S., & Kertmen, H. (2018). Experience Reduces Surgical and Hardware-Related Complications of Deep Brain Stimulation Surgery: A Single-Center Study of 181 Patients Operated in Six Years. Parkinson's disease, 2018, 3056018. https://doi.org/10.1155/2018/3056018
Verhagen, R., Schuurman, P. R., van den Munckhof, P., Contarino, M. F., de Bie, R. M., & Bour, L. J. (2016). Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images. Journal of neural engineering, 13(6), 066009. https://doi.org/10.1088/1741-2560/13/6/066009
Carl, B., Bopp, M., Gjorgjevski, M., & Nimsky, C. (2018). Navigation-Supported Stereotaxy by Applying Intraoperative Computed Tomography. World Neurosurgery, 118, e584–e592. https://doi.org/10.1016/j.wneu.2018.06.246
Giampiccolo, D., Parisi, C., Meneghelli, P., Tramontano, V., Basaldella, F., Pasetto, M., Pinna, G., Cattaneo, L., & Sala, F. (2021). Long-term motor deficit in brain tumour surgery with preserved intra-operative motor-evoked potentials. Brain communications, 3(1), fcaa226. https://doi.org/10.1093/braincomms/fcaa226
Plans, G., Fernández-Conejero, I., Rifà-Ros, X., Fernández-Coello, A., Rosselló, A., & Gabarrós, A. (2017). Evaluation of the High-Frequency Monopolar Stimulation Technique for Mapping and Monitoring the Corticospinal Tract in Patients With Supratentorial Gliomas. A Proposal for Intraoperative Management Based on Neurophysiological Data Analysis in a Series of 92 Patients. Neurosurgery, 81(4), 585–594. https://doi.org/10.1093/neuros/nyw087
Krieg, S. M., Shiban, E., Droese, D., Gempt, J., Buchmann, N., Pape, H., Ryang, Y. M., Meyer, B., & Ringel, F. (2012). Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in glioma surgery. Neurosurgery, 70(5), 1060–1071. https://doi.org/10.1227/NEU.0b013e31823f5ade
Malcharek, M. J., Landgraf, J., Hennig, G., Sorge, O., Aschermann, J., & Sablotzki, A. (2011). Recordings of long-latency trigeminal somatosensory-evoked potentials in patients under general anaesthesia. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 122(5), 1048–1054. https://doi.org/10.1016/j.clinph.2010.08.017
Szelényi, A., Kothbauer, K. F., & Deletis, V. (2007). Transcranial electric stimulation for intraoperative motor evoked potential monitoring: Stimulation parameters and electrode montages. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 118(7), 1586–1595. https://doi.org/10.1016/j.clinph.2007.04.008
Wagner, A., Ille, S., Liesenhoff, C., Aftahy, K., Meyer, B., & Krieg, S. M. (2022). Improved potential quality of intraoperative transcranial motor-evoked potentials by navigated electrode placement compared to the conventional ten-twenty system. Neurosurgical review, 45(1), 585–593. https://doi.org/10.1007/s10143-021-01568-4
Viganò, L., Callipo, V., Lamperti, M., Rossi, M., Conti Nibali, M., Sciortino, T., Gay, L., Puglisi, G., Leonetti, A., Cerri, G., & Bello, L. (2022). Transcranial versus direct electrical stimulation for intraoperative motor-evoked potential monitoring: Prognostic value comparison in asleep brain tumor surgery. Frontiers in oncology, 12,963669. https://doi.org/10.3389/fonc.2022.963669
Sarnthein, J., Seidel, K., Neidert, M. C., Raabe, A., Sala, F., Tonn, J. C., Thon, N., & Szelenyi, A. (2022). Evaluation of a new cortical strip electrode for intraoperative somatosensory monitoring during perirolandic brain surgery. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 142, 44–51. https://doi.org/10.1016/j.clinph.2022.07.497
Sarnthein, J., Albisser, C., & Regli, L. (2022). Transcranial electrical stimulation elicits short and long latency responses in the tongue muscles. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 138, 148–152. https://doi.org/10.1016/j.clinph.2022.03.016
Szelényi, A., & Fava, E. (2022). Long latency responses in tongue muscle elicited by various stimulation sites in anesthetized humans - New insights into tongue-related brainstem reflexes. Brain stimulation, 15(3), 566–575. https://doi.org/10.1016/j.brs.2022.03.003
Ansó, J., Scheidegger, O., Wimmer, W., Gavaghan, K., Gerber, N., Schneider, D., Hermann, J., Rathgeb, C., Dür, C., Rösler, K. M., Mantokoudis, G., Caversaccio, M., & Weber, S. (2018). Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience. Annals of biomedical engineering, 46(10), 1568–1581. https://doi.org/10.1007/s10439-018-2094-7
Shiban, E., Zerr, M., Huber, T., Boeck-Behrends, T., Wostrack, M., Ringel, F., Meyer, B., & Lehmberg, J. (2015). Poor diagnostic accuracy of transcranial motor and somatosensory evoked potential monitoring during brainstem cavernoma resection. Acta neurochirurgica, 157(11), 1963–1969. https://doi.org/10.1007/s00701-015-2573-7
Krieg, S. M., Kempf, L., Droese, D., Rosahl, S. K., Meyer, B., & Lehmberg, J. (2014). Superiority of tympanic ball electrodes over mastoid needle electrodes for intraoperative monitoring of hearing function. Journal of neurosurgery, 120(5), 1042–1047. https://doi.org/10.3171/2014.1.JNS13396
Sarnthein, J., Hejrati, N., Neidert, M. C., Huber, A. M., & Krayenbühl, N. (2013). Facial nerve motor evoked potentials during skull base surgery to monitor facial nerve function using the threshold-level method. Neurosurgical focus, 34(3), E7. https://doi.org/10.3171/2012.12.FOCUS12386
Gläsker, S., Pechstein, U., Vougioukas, V. I., & Van Velthoven, V. (2006). Monitoring motor function during resection of tumours in the lower brain stem and fourth ventricle. Child's nervous system: ChNS: official journal of the International Society for Pediatric Neurosurgery, 22(10), 1288–1295. https://doi.org/10.1007/s00381-006-0101-z
Schlake, H. P., Goldbrunner, R. H., Milewski, C., Krauss, J., Trautner, H., Behr, R., Sörensen, N., Helms, J., & Roosen, K. (2001). Intra-operative electromyographic monitoring of the lower cranial motor nerves (LCN IX-XII) in skull base surgery. Clinical neurology and neurosurgery, 103(2), 72–82. https://doi.org/10.1016/s0303-8467(01)00115-9
Goldbrunner, R. H., Schlake, H. P., Milewski, C., Tonn, J. C., Helms, J., & Roosen, K. (2000). Quantitative parameters of intraoperative electromyography predict facial nerve outcomes for vestibular schwannoma surgery. Neurosurgery, 46(5), 1140–1148. https://doi.org/10.1097/00006123-200005000-00023
Greve, T., Wang, L., Katzendobler, S., Geyer, L. L., Schichor, C., Tonn, J. C., & Szelényi, A. (2021). Bilateral and Optimistic Warning Paradigms Improve the Predictive Power of Intraoperative Facial Motor Evoked Potentials during Vestibular Schwannoma Surgery. Cancers, 13(24), 6196. https://doi.org/10.3390/cancers13246196
Greve, T., Wagner, A., Ille, S., Wunderlich, S., Ikenberg, B., Meyer, B., Zimmer, C., Shiban, E., & Kreiser, K. (2020). Motor evoked potentials during revascularization in ischemic stroke predict motor pathway ischemia and clinical outcome. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 131(9), 2307–2314. https://doi.org/10.1016/j.clinph.2020.05.026
Szelényi, A., Jung, C. S., Schön, H., & Seifert, V. (2002). Brain tissue oxygenation monitoring supplementary to somatosensory evoked potential monitoring for aneurysm surgery. Initial clinical experience. Neurological research, 24(6), 555–562. https://doi.org/10.1179/016164102101200528
Maier, S., Morlock, J., Benk, C., Kari, F. A., Siepe, M., Beyersdorf, F., Czerny, M., & Rylski, B. (2020). Impact of Intermittent Functional Internal Iliac Artery Occlusion on Spinal Cord Blood Supply during TEVAR. The Thoracic and cardiovascular surgeon, 68(4), 315–321. https://doi.org/10.1055/s-0039-1688474
Malcharek, M. J., Hesse, J., Hesselbarth, K., Thoma, K., Wegner, C., Sablotzki, A., Hennig, G., & Gille, J. (2020). Warning criteria for MEP monitoring during carotid endarterectomy: a retrospective study of 571 patients. Journal of clinical monitoring and computing, 34(3), 589–595. https://doi.org/10.1007/s10877-019-00345-5
Tecchio, F., Cecconi, F., Colamartino, E., Padalino, M., Valci, L., & Reinert, M. (2020). The Morphology of Somatosensory Evoked Potentials During Middle Cerebral Artery Aneurysm Clipping (MoSAC): A Pilot Study. Clinical EEG and neuroscience, 51(2), 130–136. https://doi.org/10.1177/1550059419874942
Shiban, E., Wunderlich, S., Kreiser, K., Lehmberg, J., Hemmer, B., Prothmann, S., Zimmer, C., Meyer, B., & Ringel, F. (2016). Predictive value of transcranial evoked potentials during mechanical endovascular therapy for acute ischaemic stroke: a feasibility study. Journal of neurology, neurosurgery, and psychiatry, 87(6), 598–603. https://doi.org/10.1136/jnnp-2015-310649
Malcharek, M. J., Herbst, V., Bartz, G. J., Manceur, A. M., Gille, J., Hennig, G., Sablotzki, A., & Schneider, G. (2015). Multimodal evoked potential monitoring in asleep patients versus neurological evaluation in awake patients during carotid endarterectomy: a single-centre retrospective trial of 651 patients. Minerva anestesiologica, 81(10), 1070–1078.
Weigang, E., Hartert, M., Siegenthaler, M. P., Beckmann, N. A., Sircar, R., Szabò, G., Etz, C. D., Luehr, M., von Samson, P., & Beyersdorf, F. (2006). Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting. The Annals of thoracic surgery, 82(5), 1679–1687. https://doi.org/10.1016/j.athoracsur.2006.05.037
Weigang, E., Hartert, M., Siegenthaler, M. P., Pitzer-Hartert, K., Luehr, M., Sircar, R., von Samson, P., & Beyersdorf, F. (2006). Neurophysiological monitoring during thoracoabdominal aortic endovascular stent graft implantation. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 29(3), 392–396. https://doi.org/10.1016/j.ejcts.2005.11.039
Weigang, E., Hartert, M., von Samson, P., Pechstein, U., Genstorfer, J., Pitzer, K., Zentner, J., & Beyersdorf, F. (2005). Improved spinal cord perfusion during thoracoabdominal aortic repair. The Thoracic and cardiovascular surgeon, 53(2), 69–73. https://doi.org/10.1055/s-2004-830521
Genstorfer, J., Hartert, M., Von Samson, P., Pitzer, K., Sircar, R., Luehr, M., Beyersdorf, F. & Weigang, E. (2005). Evozierte Potentiale in der Aortenchirurgie. Zeitschrift für Herz- Thorax- und Gefäßchirurgie, 19(4), 149–155. https://doi.org/10.1007/s00398-005-0507-z
Weigang, E., Hartert, M., Sircar, R., V Samson, P., Pitzer, K., Genstorfer, J., Zentner, J., & Beyersdorf, F. (2005). Setup of neurophysiological monitoring with tcMEP/SSEP during thoracoabdominal aneurysm repair. The Thoracic and cardiovascular surgeon, 53(1), 28–32. https://doi.org/10.1055/s-2004-830431
Kastler, A., Attyé, A., Maindet, C., Nicot, B., Gay, E., Kastler, B., & Krainik, A. (2018). Greater occipital nerve cryoneurolysis in the management of intractable occipital neuralgia. Journal of neuroradiology = Journal de neuroradiologie, 45(6), 386–390. https://doi.org/10.1016/j.neurad.2017.11.002
Kastler, A., Gruber, H., Gizewski, E., & Loizides, A. (2018). Ultrasound Assessment of Ice-Ball Formation by Cryoneurolysis Device in an Ex Vivo Model. Regional anesthesia and pain medicine, 43(6), 631–633. https://doi.org/10.1097/AAP.0000000000000793
Perolat, R., Kastler, A., Nicot, B., Pellat, J. M., Tahon, F., Attye, A., Heck, O., Boubagra, K., Grand, S., & Krainik, A. (2018). Facet joint syndrome: from diagnosis to interventional management. Insights into imaging, 9(5), 773–789. https://doi.org/10.1007/s13244-018-0638-x
Wolter, T., Bozhkov, Y., & Knoeller, S. M. (2017). An in vitro analysis of the size and shape of cryolesions for facet joint denervation. Clinical neurology and neurosurgery, 153, 87–92. https://doi.org/10.1016/j.clineuro.2017.01.001
Wolter, T., Kleinmann, B., & Knoeller, S. (2018). Cryoneurolysis for the treatment of cervical facet joint syndrome: a technical note. Journal of pain research, 11, 1165–1169. https://doi.org/10.2147/JPR.S161053
Kastler, A., Kogl, N., Gruber, H., Skalla, E., & Loizides, A. (2020). Lumbar medial branch cryoneurolysis under ultrasound guidance: initial report of five cases. Medical ultrasonography, 22(3), 293–298. https://doi.org/10.11152/mu-2529
Trescot A. M. (2003). Cryoanalgesia in interventional pain management. Pain physician, 6(3), 345–360.
Gabriel, R. A., Seng, E. C., Curran, B. P., Winston, P., Trescot, A. M., & Filipovski, I. (2024). A Narrative Review of Ultrasound-Guided and Landmark-based Percutaneous Cryoneurolysis for the Management of Acute and Chronic Pain. Current pain and headache reports, 28(11), 1097–1104. https://doi.org/10.1007/s11916-024-01281-z
Wojtecki, L., Elben, S., Vesper, J., & Schnitzler, A. (2017). The rhythm of the executive gate of speech: subthalamic low-frequency oscillations increase during verbal generation. The European journal of neuroscience, 45(9), 1200–1211. https://doi.org/10.1111/ejn.13429
Burnos, S., Fedele, T., Schmid, O., Krayenbühl, N., & Sarnthein, J. (2015). Detectability of the somatosensory evoked high frequency oscillation (HFO) co-recorded by scalp EEG and ECoG under propofol. NeuroImage. Clinical, 10, 318–325. https://doi.org/10.1016/j.nicl.2015.11.018
Szelényi, A., Joksimovic, B., & Seifert, V. (2007). Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society, 24(1), 39–43. https://doi.org/10.1097/01.wnp.0000237073.70314.f7
Dannhoff, G., Fumagalli, L., Ferrand-Sorbets, S., Dorfmuller, G., Quirins, M., & Bourdillon, P. (2024). Stereoelectroencephalography-guided radiofrequency thermocoagulation. Neurosurgical focus: Video, 11(1), V14. https://doi.org/10.3171/2024.4.FOCVID2442